NAME:

Math 351 Exam 2

Instructions: WRITE YOUR NAME CLEARLY. Do as many problems as you can for a maximal score of 100. SHOW YOUR WORK!

1. True, False, or incoherent a) All complex-valued sequences with a finite range are convergent sequences. [2 pts]

b) Let $\{s_n\}$ and $\{t_n\}$ be complex-valued sequences such that $\lim_{n\to\infty}$ $(s_n + t_n)$ = L. Then $\{s_n\}$ and $\{t_n\}$ must be convergent sequences. $[2 \text{ pts}]$

c) For any sequence of real numbers $\{a_n\}$, the inequality $\liminf a_n \leq \limsup a_n$ always holds. [2 pts]

d) There exists a sequence of real numbers
$$
\{a_n\}
$$
, for which
 $T_n = \sup\{a_k : k \ge n\}$ is a strictly increasing sequence. [2 pts]

e) Given a sequence $\{a_n\}$ in an arbitrary metric space (M, d), we can always compute limit supremum and limit infimum. [2 pts]

2. True, False, or incoherent

a) Let \sum^{∞} *n*=1 a_n be a series of positive terms. If $\limsup_{n \to \infty} \frac{a_{n+1}}{n} > 1$ *n n a a* , the series diverges [2 pts]

b) Suppose that \sum^{∞} *n*=1 a_n is a real-valued series such that for every $\varepsilon > 0$, there is an integer N, for which $\sum_{n=1}^{\infty} a_n < \varepsilon$ *n*=*N* $a_n < \varepsilon$. Then we may conclude that the series converges. [2 pts]

c) Let \sum^{∞} *n*=1 *aⁿ* be a series of positive terms. If the root test gives no information, then it is useless to try the ratio test. [2 pts]

d) A series of non-negative real numbers \sum^{∞} *n*=1 *an* converges if and only if

the series
$$
\sum_{k=1}^{\infty} 2^k a_{2^k}
$$
 converges. [2 pts]

e) The series
$$
\frac{1}{2} + 1 + \frac{1}{8} + \frac{1}{4} + \frac{1}{32} + \frac{1}{16} + \dots +
$$
 converges to 2. [2 pts]

3. True, False, or incoherent a) Let $\{x_n\}$ be a sequence of real numbers and $\{\varepsilon_n\}$ be a corresponding sequence of positive numbers such that $\sum\limits^{\infty}$ = $<$ ∞ $n=1$ $\varepsilon_n < \infty$. Then the function f defined by $f(x) = \sum$ ≥ = $x_n \geq x$ *n n* $f(x) = \sum \mathcal{E}_n$ is increasing. [2 pts]

b) The function $f(x) = x^2$ is continuous. [Hint: be careful!] [2 pts]

c) If $f(x_n) \to f(x)$ for every continuous function $f: (M, d) \to \mathbb{R}$, then it must be the case that $x_n \to x$. [2 pts]

d) If *f*: (M, d) → (N, p) is invertible with a continuous inverse f^{-1} , then for any open subset of M, V, $f(V)$ must be an open subset of N. [2 pts]

e) Let $X_\Delta: \mathbb{R} \to \mathbb{R}$ be the characteristic function of the Cantor set. Then X_{Δ} is discontinuous at every point of the Cantor set. [2 pts]

4. True, False, or incoherent

a) Let $f: (M, d) \rightarrow (N, p)$ be a function and suppose that V is a subset of N that contains a neighborhood of $f(x)$. If $[f^{-1}(V)]^{\circ} = \emptyset$, then f is **not** continuous at x. [2 pts]

b) Let M be a discrete metric space. Then any function $f: M \to \mathbb{R}$ is continuous. [2 pts]

c) Let d and p be equivalent metrics. Then the set of real-valued continuous functions on (M, d) is equivalent to the set of real-valued continuous functions on (M, p) . [2 pts]

d) For any metric space (M, d), there exists some function $f: (M, d) \rightarrow \mathbb{R}$ such that for any real number *a*, the sets $\{x : f(x) > a\}$ and ${x : f(x) < a}$ are open, but the function is **not** continuous. [2 pts]

e) Suppose that $M = A \cup B$, where $A \cap B = \emptyset$. If $f: (A, d) \rightarrow \mathbb{R}$ and f: (B, d) $\rightarrow \mathbb{R}$ are continuous, then f: (M, d) $\rightarrow \mathbb{R}$ must be continuous. $[2 \text{ pts}]$

5. Construct a real-valued sequence $\{a_n\}$ such that $\limsup a_n = 5$, while liminf *aⁿ* = −1. Can such a sequence converge? [10 pts] 6. Let $f:[0, 1] \to R$ be defined by $\overline{\mathcal{L}}$ \mathbf{I} ∤ \int ∈ -1 if $x \notin$ = x^2 *if* $x \in Q$ $x-1$ *if* $x \notin Q$ $f(x) = \begin{cases} x^2 & 2 \end{cases}$ $2x - 1$ $f(x) = \begin{cases} x^2 & \text{if } x \in \Omega \\ 0 & \text{if } x \in \Omega \end{cases}$. Determine the points at which f is continuous. [10 pts]

7. Let $f: (M, d) \rightarrow (N, p)$ be a function and suppose that $\{f(x_n)\}\$ is a convergent sequence, whenever $x_n \to a$. Prove that *f* is continuous at *a*. [10 pts]

8. Prove that the set $\{(x, y): x^3 \ge y^5\}$ is closed as a subset of \mathbb{R}^2 . [10 pts]

9. Suppose that a is an isolated point of (M, d) . Prove or disprove: There exists a function $f: (M, d) \rightarrow \mathbb{R}$ that is **not** continuous at the point *a*. [10 pts]

10. Show that the function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \tan^{-1} x$ is Lipschitz. What is the corresponding constant K? [10 pts]

11. Let $\{x_n\}$ be a sequence of real numbers defined by

$$
x_n = \begin{cases} \frac{1}{2k} & \text{if } n = 2k - 1 \\ \frac{1}{2k - 1} & \text{if } n = 2k \end{cases}
$$
 where $k \ge 1$ and therefore $n \ge 1$. Set $\varepsilon_n = \left(\frac{1}{2}\right)^n$ and define $f: R \to R$ by
$$
f(x) = \sum_{n \colon x_n < x} \varepsilon_n
$$

(a) Compute $f(0)$, $f(-1)$, $f(1)$, $f(\sqrt{2})$, and $f(1/2)$. [4 pts]

(b) Determine the set of discontinuities, $D(f)$, for the function. Justify your claim. [6 pts]